A Non Parametric Model for the Forecasting of the Venezuelan Oil Prices

نویسندگان

  • Sabatino Costanzo
  • Loren Trigo
  • Wafaa Dehne
  • Hender Prato
چکیده

A neural net model for forecasting the prices of Venezuelan crude oil is proposed. The inputs of the neural net are selected by reference to a dynamic system model of oil prices by Mashayekhi (1995, 2001) and its performance is evaluated using two criteria: the Excess Profitability test by Anatoliev and Gerko (2005) and the characteristics of the equity curve generated by a trading strategy based on the neural net predictions. ----- Se introduce aqui un modelo no parametrico para pronosticar los precios del petroleo Venezolano cuyos insumos son seleccionados en base a un sistema dinamico que explica los precios en terminos de dichos insumos. Se describe el proceso de recoleccion y pre-procesamiento de datos y la corrida de la red y se evaluan sus pronosticos a traves de un test estadistico de predictibilidad y de las caracteristicas del Equity Curve inducido por la estrategia de compraventa bursatil generada por dichos pronosticos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP

        This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

Nonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)

Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...

متن کامل

Seasonality and Forecasting of Monthly Broiler Price in Iran

The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropri...

متن کامل

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0708.3829  شماره 

صفحات  -

تاریخ انتشار 2007